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Abstract
In this paper, we solve one-dimensional SU(3) bosons with repulsive δ-function
interaction using the Bethe ansatz method. The features of the ground
and low-lying excited states are studied by both numerical and analytical
methods. We show that the ground state is a SU(3) colour ferromagnetic
state. The configurations of quantum numbers for the ground state are
given explicitly. For a finite N system, the spectra of low-lying excitations
and the dispersion relations of four possible elementary particles (holon,
antiholon, σ -coloron and ω-coloron) are obtained by solving the Bethe ansatz
equation numerically. The thermodynamic equilibrium of the system at finite
temperature is studied by using the strategy of the thermodynamicBethe ansatz;
we give a revised Gaudin–Takahashi equation which is useful for the numerical
method. Thermodynamic quantities, such as specific heat, are obtained for
some special cases. We find that the magnetic property of the model in the
high-temperature regime is dominated by Curie’s law, χ ∝ 1/T , and the
system has Fermi-liquid-like specific heat in the strong coupling limit at low
temperature.

PACS numbers: 03.65.−w, 72.15.Nj, 03.65.Ge

1. Introduction

One of the main goals of theoretical physics during the past 40 years has been to understand
quantum systems involving many particles. Once the interaction between these particles
is taken into account, the problem becomes complicated. Meanwhile, as long as their
interaction is not sufficiently weak, the perturbative methods that were powerful in many
quantum mechanics text books become unreliable. In one dimension, various non-perturbative
methods have been proposed, among which the impact of exactly solvable theoretical models
is undeniable. Particles with δ-function interaction provide a simple but interesting model.
Lieb and Liniger [1] first solved a Bose system under the periodic boundary condition in the
case of spin-0 or in the absence of internal degrees of freedom. The method they used is
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nowadays referred to as the coordinate Bethe ansatz. The extension of the periodic boundary
condition to the boundary condition of the potential well of infinite depth was made by Gaudin
[2] and Woynarivich [3]. The first attempt to develop the method applied in [1] to deal with
spin-1/2 fermions was made by McGuire [4] who can, however, deal with the case of only
one spin-down and keeping other spins up. A further step of considering two spin-down and
other spins up was made by Flicker and Lieb [5]. Gaudin [6] and Yang [7] successfully solved
the problem for an arbitrary number of spins in the state of spin-down. In Yang’s paper [7],
the first non-trivial case of the Yang–Baxter equation was introduced. Actually, the strategy
for general multi-component systems was proposed in [7] although the explicit solution was
given only for spin-1/2 particles (it is then the Fermi system).

The literature in [7] was later extended by Sutherland [8] to any irreducible representation
of the permutation group. Actually, both Yang and Sutherland adopted an antisymmetric
wavefunction under permutating indistinguishable particles. Thus, Yang solved the problem
of two-component fermions and Sutherland solved N-component fermions using the coordinate
Bethe ansatz. As the two-component system is mostly associated with the ‘spin-1/2’ system,
which is conventionally referred to as the Fermi system, the coordinate Bethe ansatz has not
been used for two-component Bose systems until recently [9].

Along with the developments of the quantum inverse scattering method, Kulish [10]
discussed the multi-component nonlinear Schrödinger equation in terms of the quantum inverse
scattering method (QISM) in order to re-derive the Bethe ansatz equations of Yang [7] and
Sutherland [8]. Kulish explicitly formulated the two-component case and conjectured that
Sutherland’s results would be obtained by repeating his procedure n − 2 times. Actually,
this is not possible because Kulish [10] adopted commutation (instead of anticommutation)
relations, but the system both Yang and Sutherland considered is the Fermi system. It is now
clear that the first quantization form of the system which Kulish considered ought to be a
system of SU(n) bosons with δ-function interaction. The QISM was also employed for the
nonlinear Schrödinger equation for a graded matrix but it breaks the Yang–Baxter relation at
first [11], which was noticed and overcome later [12].

Although the Bethe ansatz equations for two-component bosons was formulated earlier
by Kulish, the nature of the ground state and the properties of low-lying excitations were not
exposed until the work of Li et al [9]. We know that not only can the two-component Bose
gas be formed in magnetically trapped 87Rb [13], but also a three-component Bose gas can
be produced in an optically trapped 23Na [14]. It will be valuable to study the model of the
three-component Bose system. In this paper, we study a system of three-component bosons
with SU(3) symmetry in one dimension. On the basis of the Bethe ansatz equations, we discuss
the ground state, the low-lying excited states and the thermodynamics of the system at finite
temperature, and we try to obtain thermal coefficients for some special cases. Our paper is
organized as follows. In the following section we introduce the model and the corresponding
Bethe ansatz equations for charge rapidity and colour rapidities. In section 3, we explicitly
show that the ground state is a colour ferromagnetic state and how the quantum numbers in
the Bethe ansatz equations should be taken for the ground state. In section 4, we study the
low-lying excited states extensively by analysing the possible variations in the sequence of
quantum numbers. The numerical results of energy momentum spectra for each excitation are
given. Furthermore, the dispersion relations of four possible elementary particles are obtained.
In section 5 we discuss the general thermodynamics of the system with the strategy of the
thermodynamic Bethe ansatz (TBA), which was proposed by Yang and Yang [19] when they
studied Bose gas with δ-function interaction in one dimension. In section 6 we discuss the
system for some special cases and we obtain some analytical results. In section 7 we give a
brief summary.
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2. The model and its Bethe ansatz solution

We consider an interacting SU(3) Bose field in a one-dimensional ring of length L. The model
Hamiltonian of the system reads

H0 =
∫

dx

[∑
a

∂xψ
∗
a ∂xψa +

c

2

∑
a,b

ψ∗
aψaψ

∗
b ψb

]
(1)

where the natural unit is adopted for simplicity. Here, c is the coupling constant and
a, b = 1, 2, 3 (which we call colours hereafter) denote the three states that carry out the
fundamental representation of the SU(3) group. The fields obey the following commutation
relations:

[ψ∗
a (x), ψb(y)] =

∑
n

δabδ(x − y − nL). (2)

In the terminology of group theory, the three states |1〉, |2〉 and |3〉 are labelled by weight
vectors (1/2, 0), (−1/2, 1/2) and (0,−1/2), respectively. The two su(2) subalgebra in the
su(3) Lie algebra are [T +, T −] = 2T z and [U+, U−] = 2Uz. With the help of these ‘flipping’
operators, U± and T ±, we can generate the three states from the highest weight state |1〉, i.e.

T −|1〉 = |2〉 U−|2〉 = |3〉.
With additional commutation relations defined by

V + = [T +, U+] V − = [T −, U−]

the Chevalley bases of the su(3)Lie algebra consist of eight generators {T ±, U±, V ±, T z, Uz}.
In the domain with xi �= xj , the Hamiltonian (1) reduces to that for free bosons and its

eigenfunction is therefore just the superposition of plane waves. When two particles collide
with each other, a scattering process occurs. The coordinate Bethe ansatz embodies that
this process is purely elastic, i.e. exchange of their momenta. So for a given momentum
k = (k1, k2, . . . , kN), the scattering momenta include all permutations of the components of
k. Thus, for the case of N bosons, because the Hamiltonian is invariant under the action of the
permutation group SN , we can adopt the following Bethe ansatz wavefunction

�a(x) =
∑
P∈SN

Aa(P,Q) ei(P k|Qx) x ∈ C(Q) (3)

where a = (a1, a2, . . . , aN), aj denotes the colour label of the j th particle, Pk denotes the
image of a given k := (k1, k2, . . . , kN) by a mapping P ∈ SN , and the coefficients A(P,Q)
are functionals of P and Q where Q denotes a permutation of the coordinates which define
a region with 0 < xQ1 < xQ2 < . . . < xQN

< L. For a Bose system, the wavefunction is
supposed to be symmetric under any permutation of both coordinates and colour indices, i.e.

(�j�)a(x) = �a(x) (4)

where �j : {a1, . . . , aj , aj+1, . . .} �→ {a1, . . . , aj+1, aj , . . .} and (�j�)a is well defined
by ��ja(�

jx). Furthermore, using the identity (Pk|�iQx) = (�iPk|Qx) and
the rearrangement theorem of group theory, we have the following consequence from
equation (4):

Aa(P,�
iQ) = A�ja(�

iP,Q). (5)

The δ-function term in the Hamiltonian (1) contributes a boundary condition across the
hyper-plane xQj

= xQj+1

i((Pk)j − (Pk)j+1)[Aa(P,�jQ)− Aa(�
jP,�jQ)− Aa(P,Q) +Aa(�jP,Q)]

= 2c[Aa(P,Q) + Aa(�jP,Q)]. (6)
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By making use of the relations (5) and (6) together with the continuity condition, we can
obtain the following relation

Aa(�
jP,Q) = i[(Pk)j − (Pk)j+1]Pj + c

i[(kP )j − (Pk)j+1] − c
Aa(P,Q) (7)

where Pj permutates the colour labels of bosons located at xQj
and xQj+1 .

Applying the periodic boundary condition�
(
. . . , xQj

, . . .
) = �

(
. . . , xQj

+L, . . .
)

and
making use of the standard procedure of the QISM [8, 10, 15], we can obtain the Bethe ansatz
equations:

eikjL = −
N∏
l=1

kj − kl + ic

kj − kl − ic

M∏
ν=1

kj − λν − ic/2

kj − λν + ic/2

1 = −
N∏
l=1

λγ − kl − ic/2

λγ − kl + ic/2

M∏
ν=1

λγ − λν + ic

λγ − λν − ic

M ′∏
α=1

λγ − µα − ic/2

λγ − µα + ic/2
(8)

1 = −
M∏
ν=1

µβ − λν − ic/2

µβ − λν + ic/2

M ′∏
α=1

µβ − µα + ic

µβ − µα − ic
.

λ and µ are SU(3) colour rapidities. There areM −M ′ particles in the state |2〉,M ′ in |3〉 and
N−M in |1〉. We would like to mention here that the state obtained above is the highest weight
state among the multiplet of SU(3) representation labelled (N/2 + M ′/2 − M,M/2 − M ′).
The other states in the multiplets can be generated by iterate application of the flipping
operators T − and U−.

Taking the logarithm of equations (8) we have secular equations

kjL = 2πIj +
N∑
l=1

�1(kj − kl) +
M∑
ν=1

�−1/2(kj − λν)

2πJγ =
N∑
l=1

�−1/2(λγ − kl) +
M∑
ν=1

�1(λγ − λν) +
M ′∑
α=1

�−1/2(λγ − µα) (9)

2πJ ′
β =

M∑
ν=1

�−1/2(µβ − λν) +
M ′∑
α=1

�1(µβ − µα)

where �n(x) = −2 tan−1(x/nc). The quantum number Ij for charge rapidity kj takes an
integer or half-integer depending on whether N −M is odd or even. The quantum number
Jγ and J ′

β for SU(3) colour rapidities λγ and µβ take an integer or half-integer depending on
whetherN −M −M ′ andM −M ′ are odd or even, respectively. Once all roots {kj , λγ , µβ}
are solved from the above equations (9) for a given set of quantum numbers {Ij , Jγ , J ′

β}, the
energy and momentum will be calculated by

E =
N∑
j=1

k2
j p = 2π

L


 N∑
j=1

Ij −
M∑
γ=1

Jγ −
M ′∑
β=1

J ′
β


 (10)

where the second equation of equation (10) is obtained from equation (9) directly.
For a state with real roots (k, λ, µ), we may define the distribution densities ρ(k), σ (λ)

and ω(µ):

ρ(kj ) = 1/L(kj+1 − kj )

σ (λγ ) = 1/L(λγ+1 − λγ ) (11)

ω(µβ) = 1/L(µβ+1 − µβ).
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In terms of those densities, the energy and momentum become

E/L =
∫
k2ρ(k) dk p/L =

∫
kρ(k) dk (12)

while N,M and M ′ are determined by

N/L =
∫
ρ(k) dk M/L =

∫
σ(λ) dλ M ′/L =

∫
ω(µ) dµ. (13)

As the SU(3) ‘magnetic’ field is characterized by two parametersH1 andH2, the Zeeman term
is given by

Hzee = H1(N − 2M +M ′)/2 +H2(M − 2M ′)/2

= H1L

2

∫
ρ(k) dk +

(H2 − 2H1)L

2

∫
σ(λ) dλ +

(H1 − 2H2)L

2

∫
ω(µ) dµ.

(14)

3. The ground state

It is easy to show that the first equation of equation (9) is a monotonically increasing function
of kj , i.e. if Ii < Ij we have ki < kj . So the configuration of {Ij } for the ground state is given
by successive integers or half-integers symmetrically arranged around zero, i.e. Ij+1 − Ij = 1.
In order to observe the properties of {Jγ , J ′

β}, it is useful to investigate equations (9) in the
weak coupling limit c → 0. Due to �±n(x) → ∓π sgn(x), equations (9) become

2Ij = kjL/π +
N∑
l=1

sgn(kj − kl)−
M∑
ν=1

sgn(kj − λν)

2Jγ =
N∑
l=1

sgn(λγ − kl)−
M∑
ν=1

sgn(λγ − λν) +
M ′∑
α=1

sgn(λγ − µα) (15)

2J ′
β =

M∑
ν=1

sgn(µβ − λν)−
M ′∑
α=1

sgn(µβ − µα).

We can choose the subscripts of the rapidities kj , λγ , µβ in such a way that Ij , Jγ , J ′
β are all

ranged in increasing order. Then we have

2(Ij+1 − Ij − 1) = L

π
(kj+1 − kj )−

M∑
ν=1

[sgn(kj+1 − λν)− sgn(kj − λν)]

2(Jγ+1 − Jγ + 1) =
N∑
l=1

[sgn(λγ+1 − kl)− sgn(λγ − kl)]

(16)

+
M ′∑
α=1

[sgn(λγ+1 − µα)− sgn(λγ − µα)]

2(J ′
β+1 − J ′

β + 1) =
M∑
ν=1

[sgn(µβ+1 − λν)− sgn(µβ − λν)].

Therefore, if J ′
β+1 − J ′

β = m, there must exist m + 1 solutions of λν satisfying
µβ < λν < µβ+1; and if Jγ+1 − Jγ = n, there must be n + 1 solutions of kl and µα satisfying
λγ < kl, µα < λγ+1. So the existence of a λν between two µ has a positive contribution to the
density of µ (11), and vice versa for µ to λ. However, from the first equation of equation (16),
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Figure 1. The density of state in k-space for the ground state. The distribution changes gradually
from a histogram to a narrow peak for the coupling from strong to weak. The figure is plotted for
N = L = 41 and c = 10, 1, 0.1, 0.01.

for Ij+1 − Ij = n, there will be kj+1 − kj = 2nπ/L if there is λγ such that kj < λγ < kj+1,
otherwise kj+1 − kj = 2(n − 1)π/L. So a rapidity of λγ always repels the k rapidity away
from that value. As a result, an existing λγ will suppress the density of state in k-space at the
point k = λγ . The weaker the coupling, the more magnificent the effect will be. Also, for a
given set {I }, the more λ rapidities there are, the higher the energy is.

It is also useful to observe equation (16) in the strong coupling limit. We consider two
cases: M = 0 andM = 1. For M = 0, the secular equation becomes

kjL = 2πIj +
N∑
l=1

�1(kj − kl) (17)

and for M = 1 we have

k′
jL = 2πI ′

j +
N∑
l=1

�1(k
′
j − k′

l) +�−1/2(k
′
j − λ1). (18)

Here Ij − I ′
j = 1/2 due to M changing from zero to one. As c → ∞, we have

tan−1(x/c) ∼ x/c. So the above two equations become

(kj+1 − kj )L

[
1 +

2N

Lc

]
= 2π (k′

j+1 − k′
j )L

[
1 +

2(N − 1)

Lc

]
= 2π (19)

whence the distribution is almost a histogram. Referring to equation (11) the value of the
density distribution for M = 0 is larger than that for M = 1, which makes the Fermi
momentum for the latter case larger than that of the former case so as to keep the total number
of particles the same. Therefore, the state of M = 0 has lower energy.

Differing from the SU(3) fermionic model [8] and a toy model of the quark cluster
[21], the ground state of the SU(3) bosonic model is no longer a colour singlet but a colour
ferromagnetic state. The difference is due to the distinct permutation symmetries. For N
particles, the ground state is characterized by a one-row N-column Young tableau [N] whose
quantum-number configurations are{

I 0
j

} = {−(N − 1)/2, . . . , (N − 1)/2} M = M ′ = 0. (20)

The density of states for the ground state is plotted in figure 1 for various couplings with
L = N = 41.
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Figure 2. The density of state in k-space for the ground state in the presence of one colour rapidity
by choosing J1 = 0. The distribution changes from a histogram to a narrow peak gradually for the
coupling from strong to weak. The figure is plotted for N = L = 100 and c = 10, 1, 0.1, 0.01.

In the thermodynamic limit, the density corresponding to the configuration of quantum
numbers of the ground state satisfies the integral equation

ρ0(k) = 1

2π
+

∫ kF

−kF
K2(k − k′)ρ0(k

′) dk′. (21)

Here ρ0(k) and kF are the density and integration limit for the ground state, respectively, and

Kn(x) = 1

π

nc/2

n2c2/4 + x2
.

The concentration is given by

D = N/L =
∫ kF

−kF
ρ0(k) dk. (22)

From equations (21) and (22), we can determine ρ0(k) and kF . Here kF is a quasi-Fermi
momentum because the wavefunction vanishes for any kj = kl (j �= l) as long as c �= 0 even
in the Bose system, which can be seen from equation (7). The energy can be calculated by

E0/L =
∫ kF

−kF
k2ρ0(k) dk (23)

which is explicitly 1
3π

2D3
(
1 − 4

c
D

)
in the strong coupling limit. In the general case, we need

to solve the equations numerically (figure 2). We show the ground-state energy for particle
densitiesD = 1.0, 0.75, 0.5 in figure 3.

4. Low-lying excited states

The low-lying excited states are obtained by varying the configuration {Ij , Jγ , J ′
β} from that

of the ground state.

4.1. Holon–antiholon excitation

The simplest case is to remove one of I from the configuration of the ground state and add a
new one outside the original sequence, i.e.,

{Ij } = {−(N − 1)/2, . . . , n1 − 1, n1 + 1, . . . , (N − 1)/2, In}
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Figure 3. The ground-state energy E/L versus the coupling constant ln c for different densities
D = 1.0, 0.75, 0.5, 0.25.
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Figure 4. The holon–antiholon excitation spectrum calculated for N = L = 41, and c = 10 (left)
and c = 1 (right).

where |In| > (N − 1)/2 and M = M ′ = 0. We call this the holon–antiholon excitation,
which consists of a ‘holon’ created under the Fermi surface and an ‘antiholon’ created outside
it. In figure 4, we plot the numerical results of the energy-momentum spectrum for a system
with L = N = 41 (the other part is just the mirror image of the plotted part corresponding to
the state with p → −p coming from the negative In). From the figure, we notice that there
is a minimum in the excitation energy at p = 2π due to the fact that both I 0

1 replaced by
In = (N + 1)/2 and I 0

N share the same energy; their momenta difference, however, is 2π . The
overall structure of the spectrum is not changed obviously between c = 1 and c = 10. For
a system of finite size, the gap of holon–antiholon excitations opens. In the thermodynamic
limit, however, it vanishes.

In the configuration of quantum numbers for the ground state (20), replacing I 0
N =

(N − 1)/2 by I 0
N = (N − 1)/2 + n, n = 1, 2, . . . and keeping the others unchanged, we

obtain the dispersion relation of antiholon (figure 5) by solving the Bethe ansatz equations (9)
numerically. In a similar way, replacing I 0

n , n = 1, . . . , N of
{
I 0
j

}
in turn by (N + 1)/2, we

have the dispersion relation of the holon, as shown in figure 6.
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Figure 5. The dispersion relation of antiholon excitation for different coupling constants where the
curves from bottom to top correspond to c = 1, 10, 20, 40 and 80, respectively. HereN = L = 40.
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Figure 6. The dispersion relation of the holon for different coupling constants where the curves
from bottom to top correspond to c = 1, 10, 20, 40 and 80, respectively. Here N = L = 40.

In the thermodynamic limit, it is plausible to calculate the excitation energy by making
ρ(k) = ρ0(k) + ρ1(k)/L where ρ0(k) is the density of the ground state. By creating a hole
inside the quasi-Fermi sea k̄ ∈ [−kF , kF ] and an additional kp > kF outside it, we have

ρ1(k) + δ(k − k̄) =
∫ kF

−kF
dk′ ρ1(k

′)K2(k − k′) +K2(k − kp). (24)

The excitation energy consists of two terms �E = ∫
k2ρ1(k) dk + k2

p = εh(k̄) + εa(kp).
The holon energy εh and antiholon energy εa(kp) = −εh(kp) are given by

εh(k̄) = −k̄2 +
∫ kF

−kF
k2ρh1 (k, k̄) dk

(25)

ρh1 (k, k̄) = −K2(k − k̄) +
∫ kF

−kF
K2(k − k′)ρh1 (k

′, k̄) dk′.

4.2. Holon–coloron excitation

Excitations related to the colour sector are characterized by adding λ and µ rapidities into
the system. The simplest excitation of this type is obtained by considering M = 1, which is
labelled (N/2 − 1, 1/2). Compared to the ground state, the quantum number changes from
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Figure 7. The holon–coloron(σ type) excitation spectrum calculated forN = L = 21, and c = 10
(left) and c = 1 (right).

half-integer to integer, or vice versa. We call this type of excitation, σ -coloron, which is
regarded as an elementary quasi-particle of the present model. Its quantum number takes

I1 = −N/2 + δ1,j1 (1 � j1 � N + 1)

Ij = Ij−1 + 1 + δj,j1 (j = 2, . . . , N)

while J1 = I1 + m (m = 1, 2, . . . , N − 1) so that I1 < J1 < IN . This produces N − 1
multiplets. The excitation spectra are plotted in figure 7 for a system of N = L = 21 with
c = 10, 1, respectively.

Adding an additional λ rapidity to the colour ferromagnetic ground state brings about a
hole in the k-sector. Now we have two-parameter excitation �E = ∫

k2ρ1(k) dk where the
ρ1(k) solves

ρ1(k) + δ(k − k̄) =
∫ kF

−kF
K2(k − k′)ρ1(k

′) dk′ −K1(k − λ). (26)

The energy of the holon–coloron excitation consists of two terms �E = εh(k̄) + εc(λ).
εh is determined by equations (25) and εc is defined by εc(λ) = ∫

k2ρc1(k, λ) with

ρc1(k, λ) = −K1(k − λ) +
∫ kF

−kF
K2(k − k′)ρc1(k

′, λ) dk′. (27)

εh(k̄) and εc(λ) are energies of the holon and σ -coloron whose dispersions are shown in
figures 6 and 9, respectively.

Furthermore, the overall structure for the case of c = 1 in figure 7 differs from the case
of c = 10. We interpret the phenomenon as being due to the fact that the dependence of the
dispersion relations of the holon and σ -coloron on the coupling constant are different. This
feature can be concluded from figures 6 and 9. When c decreases, εh(p) decreases while εc(p)
increases.

4.3. The σ -type coloron–coloron excitation

Leaving the configuration of the ground state
{
I 0
j

}
unchanged and changing M from zero to

M = 2, which corresponds to (N/2 − 2, 1), a two-parameter excitation in the λ-sector is
characterized by

−(N − 1)/2 < J1 < J2 < (N − 1)/2.
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Figure 8. The coloron(σ type)–coloron(σ type) excitation spectrum calculated for N = L = 21,
and c = 10 (left) and c = 1 (right).

There are in total N(N − 3)/2 possible choices for such a type of excitation. In figure 8, we
plot the numerical result of the energy-momentum spectrum for a system with N = L = 21.

The excitation energy of coloron(σ type)–coloron (σ type) can be calculated by
�E = ∫

k2ρc1(k, λ1, λ2) dk, where ρc1(k, λ1, λ2) is determined by

ρc1(k, λ1, λ2) = −K1(k − λ1)−K1(k − λ2) +
∫ kF

−kF
K2(k − k′)ρc1(k

′, λ1, λ2) dk′. (28)

It consists of two terms �E = εc(λ1) + εc(λ2), where the coloron energy εc(λ) has been give
in the text before equation (27).

4.4. Dispersion relation of the ω-coloron

The fourth possible excitation involves both the additional quantum numbers J and J ′. For
M = 2 and M ′ = 1 there is no range for J ′ varying, but for large M the excitation is no
longer low-lying excitation. So we only show its dispersion relation, which is described by
the following configuration

{Ij } = {−(N − 1)/2, . . . , (N − 1)/2}
{Jγ } = {−M/2, . . . , (M − 2)/2} (29)

J ′
1 = −M/2 + 1, . . . ,M/2 − 1

for a given M. We have plotted the dispersion relation of the ω-coloron in figure 10 by varying
J ′

1 for a system withL = N = 40. The figure has a minimum aroundp = π whenM = N/2.
Up to now, we have discussed three low-lying excitation energies and the dispersion

relations of four possible elementary particles: holon, antiholon, σ -coloron and ω-coloron.
We have found that these low-lying excitations are gapless in the thermodynamic limit
(figures 5, 6, 9, 10).

5. Thermodynamics at finite temperature

For the ground state (i.e. at zero temperature), the charge rapidities k are the real roots of
the Bethe ansatz equations (9). For the excited state, however, the λ and µ rapidities can be
complex roots [16, 17] which are always from a ‘bound state’ with several other λ. This arises
from the consistency of both sides of the Bethe ansatz equations [18] in the limit L → ∞,
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Figure 9. The dispersion relation of σ -coloron for different coupling constants where the curves
from top to bottom correspond to c = 1, 10, 20, 40 and 80, respectively. Here N = L = 41.
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Figure 10. The dispersion relation of ω-coloron for different coupling constants where the curves
from top to bottom correspond to c = 1, 10, 20, 40 and 80, respectively. Here N = L = 40. Zero
energy corresponds to the M = N/2 ground state.

N → ∞. The n-string rapidity is defined by

�nj
a = λna + (n + 1 − 2j)iu +O(exp(−δN))

Unj
a = µna + (n + 1 − 2j)iu +O(exp(−δN)) (30)

where u = c/2, j = 1, 2, . . . , n. The total numbers of λ and µ are determined by

M =
∞∑
n=1

nMn M ′ =
∞∑
n=1

nM ′
n (31)

whereMn andM ′
n denote the number of λ n-strings andµ n-strings, respectively. Equations (9)

become

kjL = 2πIj +
∑
l

�1(kj − kl) +
∑
an

�−n/2
(
kj − λna

)
2πJ na =

∑
l

�−n/2
(
λna − kl

)
+

∑
bl,t �=0

Anlt�t/2
(
λna − λlb

)
+

∑
clt

Bnlt�−t/2
(
λna − µlc

)
(32)

2πJ ′n
a =

∑
blt

Bnlt�t/2
(
µna − λlb

)
+

∑
cl,t �=0

Anlt�−t/2
(
µna − µlc

)
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where

Anlt =



1 for t = n + l, |n− l|
2 for t = n + l − 2, . . . , |n− l| + 2
0 otherwise

and

Bnlt =
{

1 for t = n + l − 1, n + l − 3, . . . , |n− l| + 1
0 otherwise

and the quantum numbers
{
Ij , J

n
a , J

′n
a

}
label the state which is no longer the ground state.

Replacing kj , λna, µ
n
a in equations (32) by continuous variables k, λ,µ but still keeping the

summation over the solutions of these roots, we can consider the quantum numbers Ij , J na , J
′n
a

as functions I (k), J n(λ) and J ′n(µ) given by equations (32). Taking I (λ) as an example,
when I (k) passes through one of the quantum numbers Ij , the corresponding k is equal to
one of the roots kj , as for J n(λ) and J ′n(µ). However, there may exist some integers or
half-integers for which the corresponding k(λ,µ) is not in the set of roots. Such a situation
is conventionally referred to as a ‘hole’. In the thermodynamic limit, we may introduce the
densities of real k, λ n-string and µ n-string

ρ(k) + ρh(k) = (1/L) dI (k)/dk

σn(λ) + σhn (λ) = (1/L) dJ n(λ)/dλ (33)

ωn(µ) + ωhn(µ) = (1/L) dJ ′n(µ)/dµ.

Then equations (32) give rise to the following coupled integral equations:

ρ + ρh = 1

2π
+

∫
K2(k − k′)ρ(k′) dk′ −

∑
n

∫
Kn(k − λ)σn(λ) dλ

σhn =
∫
Kn(λ− k)ρ(k) dk −

∑
lt

Anlt

∫
Kt(λ− λ′)σl(λ′) dλ′

+
∑
lt

Bnlt

∫
Kt(λ− µ)ωl(µ) dµ

ωhn =
∑
lt

Bnlt

∫
Kt(µ− λ)σl(λ) dλ−

∑
lt

Anlt

∫
Kt(µ− µ′)ωl(µ′) dµ′.

(34)

σn and ωn arising from the definition (34) that occur in the left-hand side have been moved
to the right-hand side by including the t = 0 term in the summation. In terms of densities
defined above, the total numbers of λ and µ are given by

M/L =
∑
n

n

∫
σn(λ) dλ M ′/L =

∑
n

n

∫
ωn(µ) dµ. (35)

In the presence of the SU(3) magnetic fields H1 and H2, we can define two types of
‘magnetization’ whose z-components are

T z/L = 1

2

∫
ρ(k) dk −

∑
n

n

∫
σn(λ) dλ +

1

2

∑
n

n

∫
ωn(µ) dµ

Uz/L = 1

2

∑
n

n

∫
σn(λ) dλ−

∑
n

n

∫
ωn(µ) dµ.

(36)

Hence the energy contributed by the Zeeman term (14) is

EZee = H1T
z +H2U

z. (37)
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For given ρ(k), ρh(k), σn(λ), σhn (λ), ωn(µ) and ωhn(µ) the entropy has the form [19]

S/L =
∫

[(ρ + ρh) ln(ρ + ρh)− ρ lnρ − ρh lnρh] dk

+
∑
n

∫ [(
σn + σhn

)
ln

(
σn + σhn

) − σn ln σn − σhn ln σhn
]

dλ

+
∑
n

∫ [(
ωn + ωhn

)
ln

(
ωn + ωhn

) − ωn lnωn − ωhn lnωhn
]

dµ. (38)

where the Boltzmann constant is set to unity.
At finite temperature, the thermal equilibrium is obtained by minimizing the free energy

F = E − EZee − T S − µN where µ is the chemical potential and S is the entropy of the
system. Making use of the relations derived from equations (34)

δρh = −δρ +
∫
K2(k − k′)δρ dk′ −

∑
n

∫
Kn(k − λ)δσn dλ

δσhn =
∫
Kn(λ− k)δρ dk −

∑
lt

Anlt

∫
Kt(λ− λ′)δσl(λ′) dλ′

+
∑
lt

Bnlt

∫
Kt(λ− µ)δωl(µ) dµ

δωhn =
∑
lt

Bnlt

∫
Kt(µ− λ)δσl(λ) dλ−

∑
lt

Anlt

∫
Kt(µ− µ′)δωl(µ′) dµ′

(39)

and we define

ρh(k)

ρ(k)
= κ(k) = eε(k)/T

σ hn (λ)

σn(λ)
= ηn(λ) = eζn(λ)/T

ωhn(µ)

ωn(µ)
= �n(µ) = eξn(µ)/T .

(40)

We obtain the following conditions from the minimum condition δF = 0, namely

ε(k) = k2 − µ−H1/2 − T

∫
K2(k − k′) ln(1 + e−ε(k′)/T ) dk′

− T
∑
n

∫
Kn(k − λ) ln[1 + e−ζn(λ)/T ] dλ

ζn(λ) = n(2H1 −H2)/2 + T
∫
Kn(λ− k) ln[1 + e−ε(k)/T ] dk

+ T
∑
l,t �=0

Anlt

∫
Kt(λ− λ′) ln[1 + e−ζl(λ′)/T ] dλ′

− T
∑
lt

Bnlt

∫
Kt(λ− µ) ln[1 + e−ξl (µ)] dµ

ξn(µ) = n(2H2 −H1)/2 − T
∑
lt

Bnlt

∫
Kt(µ− λ) ln[1 + e−ζl (λ)] dλ

+ T
∑
l,t �=0

Anlt

∫
Kt(µ− µ′) ln[1 + e−ξl(µ′)/T ] dµ′.

(41)
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A more useful version of equations (41) is the recursive scheme which is a revised version of
the Gaudin–Takahashi equations, as obtained by Fourier transformation:

T ln κ = k2 − µ−H1/2 − TK2(k) ∗ ln[1 + κ−1] − T
∑
n

Kn(k) ∗ ln
[
1 + η−1

n

]
ln η1 = 1

4u
sech(πλ/2u) ∗ ln

[
(1 + κ−1)(1 + η2)

/(
1 +�−1

1

)]
ln ηn = 1

4u
sech(πλ/2u) ∗ ln

[
(1 + ηn−1)(1 + ηn+1)

/(
1 +�−1

n

)]
ln�1 = 1

4u
sech(πλ/2u) ∗ ln

[
(1 +�2)

/(
1 + η−1

1

)]
ln�n = 1

4u
sech(πλ/2u) ∗ ln

[
(1 +�n−1)(1 +�n+1)

/(
1 + η−1

n

)]
.

(42)

Here * denotes a convolution. Also, these equations are completed by the asymptotic
conditions

lim
n→∞[ln ηn/n] = (2H1 −H2)/2T lim

n→∞[ln�n/n] = (2H2 −H1)/2T . (43)

Finally, we obtain the Helmholtz free energy F = E − T S

F = µN − LT

2π

∫
ln[1 + e−ε] dk (44)

and the pressure of the system

P = −∂F
∂L

= T

2π

∫
ln[1 + e−ε] dk (45)

which is formally the same as the expression of Yang and Yang [19] but the equation which ε
fulfils is different.

6. Special cases

In general, the free energy can be calculated by using formula (44), where ε(k) and ζn(λ)
are determined from equations (41) which can be solved by iteration. In the following, we
consider some special cases because explicit results are obtainable in those cases.

6.1. Zero-temperature limit

The state at zero temperature is the ground state. When T → 0, the first equation of equation
(41) becomes

ε(k) = k2 − µ−H1/2 +
∫
K2(k − k′)ε(k′) dk′ +

∑
n

∫
Kn(k − λ)ζn(λ) dλ. (46)

Then the Fermi surface is determined by ε(kF ) = 0. Since there is no hole under the Fermi
surface, we can take the ratio κ = ρh/ρ as zero when k ∈ [−kF , kF ]. As a result, it is easy
to see from equations (42) that ηn = �n → ∞. That is, M = M ′ = 0, and the state is a
colour ferromagnetic state. This is consistent with the conclusion obtained in section 4. Then
equation (46) can be rewritten as

ε0(k) = k2 − µ−H1/2 +
∫ kF

−kF
K2(k − k′)ε0(k

′) dk′ (47)
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which gives the solution of dressed energy [20], and the ground-state energy can be given in
terms of ε0

E0/L = 1

2π

∫ kF

−kF
ε0(k) dk (48)

whose dependence on the coupling constant is shown in figure 10.

6.2. High-temperature limit

In the high-temperature limit T → ∞, we can assume that all functions ηn(λ) and�n(µ) are
independent of their corresponding parameter. Due to limu→0

1
2u sech

(
πλ
2u

) = δ(λ), equations
(42) can be written as follows

η2
1 = (1 + κ−1)(1 + η2)

/(
1 +�−1

1

)
η2
n = (1 + ηn−1)(1 + ηn+1)

/(
1 +�−1

n

)
�2

1 = (1 +�2)
/(

1 + η−1
1

)
�2
n = (1 +�n−1)(1 +�n+1)

/(
1 + η−1

n

) (49)

with the asymptotic conditions (43).
Performing the Fourier transform to equations (34), we obtain the solution of the densities

of λ n-strings:

σ1 + σh1 = 1

4u
sech[πλ/2u] ∗ [

ρ + σh2 + ω1
]

σn + σhn = 1

4u
sech[πλ/2u] ∗ [

σhn−1 + σhn+1 + ωn
]

ω1 + ωh1 = 1

4u
sech[πλ/2u] ∗ [

ωh2 + σ1
]

ωn + ωhn = 1

4u
sech[πλ/2u] ∗ [

ωhn−1 + ωhn+1 + σn
]
.

(50)

If we assume that σn, σ hn and ωn, ωhn are independent of λ andµ, respectively, or letting u = 0,
we have the following relation∑

n

nσn = ρ

2
+

1

2

∑
n

nωn − nm + 1

2
σnm enm�1/T

∑
n

nωn = 1

2

∑
n

nσn − nm′ + 1

2
σnm′ enm′�2/T

(51)

where nm and nm′ are the maximal length of the λ string and µ string, respectively, and
�1 = 2H1 −H2,�2 = 2H2 −H1. In the absence of external fields H1 and H2, it is easy to
obtain M ′ = M/2 = N/3 which means there are N/3 particles in each internal state. Then
we can also infer that the contribution of the internal degree of freedom to the entropy per site
must be S = ln 3, following from the fact that the internal degree of freedom per particle is
three.

If the external field is small, expanding equation (51) for the small field and integrating
the equation over λ and µ, we obtain the SU(3) magnetization of the model

T z

L
= Mm

2L

[
1 +

nm�1

T
+

1

2

(
nm�1

T

)2

+ · · ·
]

Uz

L
= M ′

m

2L

[
1 +

nm′�2

T
+

1

2

(
nm′�2

T

)2

+ · · ·
] (52)

where Mm and Mm′ are the total number of rapidities in λ nm-strings and µ nm′ -strings,
respectively. The first term in the parentheses of both equations arises from self-magnetization,
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while the others are contributed by the external field. Equation (52) indicates that the magnetic
property of the model in the high-temperature regime is dominated by Curie’s law, χ ∝ 1/T .

6.3. The strong coupling limit

For u → ∞,Kn(k) goes to zero, and from equations (41) we have

ε = k2 − µ (53)

where the external field is set to unity. The k-sector is completely decoupled with λ- and
µ-sectors. At arbitrary temperature, the solutions for ηn and�n are independent of parameters
λ and µ, respectively, which gives rise to equation (49). The free energy of the system defined
by equation (44) can be solved by integration by part

F/L = µD − 2

π

[
1

3
µ3/2 +

T 2π2

24µ1/2

]
(54)

where the external field is set to zero.
We are not able to deduce the specific heat directly from the free energy obtained above

because the chemical potential is a function of temperature. From equations (34), the density
of charge rapidity has the form

ρ = 1

2π

1

1 + e(k2−µ)/T . (55)

Integrating the charge density over k space with the condition (13), we have an explicit
expression of the chemical potential

µ = µ0

[
1 − π2T 2

24µ2
0

]−2

(56)

where µ0 = π2D2, which denotes µ at zero temperature. Then the free energy becomes

F/L = µ0D

[
1 +

π2T 2

12µ2
0

]
− 2

3π
µ

3/2
0

[
1 +

π2T 2

4µ2
0

]
. (57)

The free energy for the SU(3) invariant spin chain also has a T 2 dependence [22].
Since in thermodynamics S = −∂F/∂T and Cv = T ∂S/∂T , we find the specific heat at

low temperature is Fermi-liquid-like:

S = Cv = T

6D
. (58)

This is the same as the result of the one-component case, since for the strong coupling limit
the colour degree of freedom and the charge degree of freedom are decoupled completely, and
the contribution of the colour degree of freedom to the free energy vanishes.

7. Conclusions

In this paper, we have solved one-dimensional SU(3) bosons with δ-function interaction using
the coordinate Bethe ansatz method. On the basis of the Bethe ansatz equations, we first
discussed the ground state of the Bose system and found that the ground state is a colour
ferromagnetic state which differs greatly from the SU(3) Fermi system. The configuration of
quantum numbers for the ground state was given explicitly. The low-lying excitations were
discussed extensively by both analytical and numerical methods. The energy-momentum
spectra for three types of excitations, holon–antiholon, holon–coloron(σ type) and coloron
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(σ type)–coloron(σ type), were plotted for c = 10 and c = 1. We also discussed the dispersion
relations of four elementary quasi-particles.

The thermodynamics of the system were studied using the TBA strategy. A revised
version of the Gaudin–Takahashi equations was obtained by minimizing the free energy at
finite temperature. We have found that the magnetic property of the system at the high-
temperature regime is dominated by Curie’s law, and for the case of strong coupling the
system possess Fermi-liquid-like properties and its specific heat is a linear function of T at
low temperature.
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